## Chapter 1 Problem $30{ }^{\dagger}$

## Given

$V_{\text {earth }}=10^{21} \mathrm{~m}^{3}$

## Solution

Convert the volume of the earth into different units.
a) Convert the volume into $\mathrm{km}^{3}$.

Since volume is distance cubed, the conversion factor must be cubed.

$$
10^{21} \mathrm{~m}^{3}\left(\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}\right)^{3}=10^{12} \mathrm{~km}^{3}
$$

b) Convert the volume into $m i^{3}$.

Since volume is distance cubed, the conversion factor must be cubed. To convert to miles we know that $1 \mathrm{mi}=1.6 \mathrm{~km}$.

$$
10^{21} m^{3}\left(\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}\right)^{3}\left(\frac{1 \mathrm{mi}}{1.6 \mathrm{~km}}\right)^{3}=2.4 \times 10^{11} \mathrm{mi}^{3}
$$

c) Convert the volume into $\mathrm{cm}^{3}$.

Since volume is distance cubed, the conversion factor must be cubed.

$$
10^{21} \mathrm{~m}^{3}\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}=10^{27} \mathrm{~cm}^{3}
$$

[^0]
[^0]:    ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

