Chapter 1 Problem $22{ }^{\dagger}$

Solution

About how many floating-point operations can a supercomputer perform each year?
According to the textbook, a supercomputer can make one floating-point operation in $10^{-17} \mathrm{~s}$. Treat this like a conversion factor where

$$
1 \text { calculation }=10^{-17} \mathrm{~s}
$$

In one year there are

$$
1 \text { year }\left(\frac{365.25 \text { day }}{1 \text { year }}\right)\left(\frac{24 \mathrm{hr}}{1 \text { day }}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=3.16 \times 10^{7} \mathrm{~s}
$$

Now convert the time into calculations

$$
3.16 \times 10^{7} s\left(\frac{1 \text { calculation }}{1 \times 10^{-17} s}\right)=3.16 \times 10^{24} \text { calculations }
$$

Since we are estimating, we really don't know it to three significant digits. Therefore, there are about 10^{24} calculations in a year.

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

