Chapter 8 Problem $36{ }^{\dagger}$

Given

$r=15 \mathrm{~m}$
$m=4.0 \times 10^{6} \mathrm{~kg}$

Solution

Find the fraction that your weight is reduced under the water tower.
Your weight due to earth's gravity is

$$
F_{e}=m g=m\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

The force exerted on you by the water tower is

$$
\begin{aligned}
& F_{w}=\left(6.672 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) \frac{\left.4.0 \times 10^{6} \mathrm{~kg}\right) \mathrm{m}}{15 \mathrm{~m}^{2}} \\
& F_{w}=m\left(1.19 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

The fraction that the water tower exerts compared to the earth is

$$
\frac{F_{w}}{F_{e}}=\frac{m\left(1.19 \times 10^{-6}\right)}{m(9.80)}=1.21 \times 10^{-7}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

