Chapter 7 Problem 28^{\dagger}

Given

$U=1.6 x^{2}-4$

Solution

a) Find the force when the particle is at $x=2.1 \mathrm{~m}$.

The relationship between force in the x direction and the potential energy is

$$
F_{x}=-\frac{d U}{d x}
$$

Substitute in the potential function given for this problem we get a force of

$$
\begin{equation*}
F_{x}=-\frac{d\left(1.6 x^{2}-4\right)}{d x}=-(1.6(2 x)-0)=-3.2 x \tag{1}
\end{equation*}
$$

Substituting in the value of $x=2.1 \mathrm{~m}$ gives

$$
F_{x}=-3.2(2.1 \mathrm{~m})=-6.72 \mathrm{~N}
$$

b) Find the force when the particle is at $x=0 \mathrm{~m}$.

Use equation (1) and substitute in $x=0 \mathrm{~m}$.

$$
F_{x}=-3.2(0 \mathrm{~m})=0 \mathrm{~N}
$$

c) Find the force when the particle is at $x=-1.4 m$.

Use equation (1) and substitute in $x=-1.4 \mathrm{~m}$.

$$
F_{x}=-3.2(-1.4 m)=4.48 \mathrm{~N}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

