Chapter 7 Problem $15{ }^{\dagger}$

Given

$y_{0}=3050 \mathrm{~m}$
$x_{0}=18 \mathrm{~km}=18,000 \mathrm{~m}$
$m=75 \mathrm{~kg}$

Solution

Find the change in gravitational potential energy going from $\{0 \hat{i}+3050 \hat{j}\} m$ to $\{18000 \hat{i}+0 \hat{j}\} m$.
Potential energy is the negative of the work done by gravity. Therefore

$$
\Delta U=-W=-\int \vec{F}_{g} d \vec{r}=-\int_{y_{0}}^{y_{f}}-m g d y
$$

Notice that only the change in the y direction changes the potential. Then

$$
\begin{aligned}
& \Delta U=m g\left(y_{f}-y_{0}\right)=(75 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0-3050 \mathrm{~m}) \\
& \Delta U=-2.24 \times 10^{6} \mathrm{~J}=-2.24 \mathrm{MJ}
\end{aligned}
$$

