Chapter 6 Problem $42{ }^{\dagger}$

Given

$P_{h d}=1.20 \mathrm{~kW}=1,200 \mathrm{~W}$
$t_{h d}=10.0 \mathrm{~min}=600 \mathrm{~s}$
$P_{n l}=7.00 \mathrm{~W}$
$t_{n l}=24.0 h=86,400 \mathrm{~s}$

Solution

Find out which consumes the most energy.
First convert to SI units. This has been done and recorded above. The energy consumed by the hair dryer is

$$
\begin{aligned}
& P=\frac{W}{t} \quad \Rightarrow \quad W=P t \\
& W_{h d}=P_{h d} t_{h d}=(1,200 \mathrm{~W})(600 \mathrm{~s})=720,000 \mathrm{~J}=720 \mathrm{~kJ}
\end{aligned}
$$

The energy consumed by the night light is

$$
W_{n l}=P_{n l} t_{n l}=(7.00 \mathrm{~W})(86,400 \mathrm{~s})=604,800 \mathrm{~J}=605 \mathrm{~kJ}
$$

The night light uses slightly less power.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

