Chapter 5 Problem 26^{\dagger}

Given

$L=1.7 \mathrm{~m}$
$\theta=15^{\circ}$

Solution

Find the speed of the tetherball.
Using the free-body diagram given above and Newton's $2^{\text {nd }}$ law gives

$$
\begin{aligned}
& \Sigma \vec{F}=m \vec{a} \\
& \vec{T}+\vec{W}=m \vec{a}
\end{aligned}
$$

Making the x direction horizontal and resolving into unit vector notation gives

$$
-T \cos \theta \hat{i}+T \sin \theta \hat{j}-m g \hat{j}=m \vec{a}
$$

Now the ball is experiencing centripetal acceleration because it is moving at constant speed at a radius of r. This acceleration is in the $-x$ direction. The equation becomes

$$
-T \cos \theta \hat{i}+T \sin \theta \hat{j}-m g \hat{j}=-m a \hat{i}
$$

The x -component equation is

$$
\begin{equation*}
-T \cos \theta=-m a \tag{1}
\end{equation*}
$$

and the y-component equation is

$$
\begin{equation*}
T \sin \theta-m g=0 \tag{2}
\end{equation*}
$$

Use equation (2) and solve for T.

$$
T=\frac{m g}{\sin \theta}
$$

Substitute this into equation (1) and solve for a.

$$
\begin{aligned}
& -\left(\frac{m g}{\sin \theta}\right) \cos \theta=-m a \\
& \frac{m g}{\tan \theta}=m a
\end{aligned}
$$

[^0]$$
a=\frac{g}{\tan \theta}=\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\tan \left(15^{\circ}\right)}=36.6 \mathrm{~m} / \mathrm{s}^{2}
$$

Since the acceleration is centripetal, then

$$
a=\frac{v^{2}}{r}
$$

Solving for speed gives

$$
\begin{align*}
& v^{2}=a r \\
& v=\sqrt{a r} \tag{3}
\end{align*}
$$

From the diagram notice that r is the adjacent side of the given angle; therefore,

$$
r=L \cos \theta
$$

and equation (3) becomes

$$
v=\sqrt{a L \cos \theta}=\sqrt{\left(36.6 m / \mathrm{s}^{2}\right)(1.7 \mathrm{~m}) \cos \left(15^{\circ}\right)}=7.75 \mathrm{~m} / \mathrm{s}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

