Chapter 5 Problem $18{ }^{\dagger}$

Given

$$
\begin{aligned}
& m_{c}=12 \mathrm{~kg} \\
& m_{t}=6.8 \mathrm{~kg} \\
& \Delta x=60 \mathrm{~cm}=0.60 \mathrm{~m}
\end{aligned}
$$

Solution

a) Find the acceleration of the turkey.

Newton's $2^{\text {nd }}$ law applied to the turkey is

$$
\begin{aligned}
& \Sigma \vec{F}=m \vec{a} \\
& \vec{N}+\vec{T}_{t}+\vec{W}_{t}=m_{t} \vec{a}
\end{aligned}
$$

Choose the coordinate system with the x coordinate begin horizontal. The acceleration of the turkey is in the $+x$ direction.

$$
N \hat{j}+T \hat{i}-m_{t} g \hat{j}=m_{t} a \hat{i}
$$

The x-component of this equation is

$$
T=m_{t} a
$$

The y-component of this equation is

$$
N-m_{t} g=0
$$

Newton's $2^{\text {nd }}$ law applied to the child is

$$
\begin{aligned}
& \Sigma \vec{F}=m \vec{a} \\
& \vec{T}_{c}+\vec{W}_{c}=m_{c} \vec{a}
\end{aligned}
$$

Choose the coordinate system with the x coordinate being horizontal. The acceleration of the child is in the $-y$ direction.

$$
T \hat{j}-m_{c} g \hat{j}=-m_{c} a \hat{j}
$$

The y-component of this equation is

$$
T-m_{c} g=-m_{c} a
$$

[^0]Take the x-component equation for the turkey and substitute it into the y-component equation for the child and solve for acceleration.

$$
\begin{aligned}
& m_{t} a-m_{c} g=-m_{c} a \\
& m_{t} a+m_{c} a=m_{c} g \\
& a=\frac{m_{c} g}{m_{t}+m_{c}}=\frac{(12 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{6.8 \mathrm{~kg}+12 \mathrm{~kg}}=6.25 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b) Find the time for the turkey to go over the edge.

Begin with the following kinematic equation.

$$
r=r_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

Displacement is $r-r_{0}$ and the initial velocity is 0 , so

$$
r-r_{0}=\frac{1}{2} a t^{2}
$$

Solving for t gives

$$
\begin{aligned}
& \frac{2\left(r-r_{0}\right)}{a}=t^{2} \\
& t=\sqrt{\frac{2\left(r-r_{0}\right)}{a}}=\sqrt{\frac{2(0.60 m)}{6.25 m / s^{2}}} \\
& t=0.438 \mathrm{~s}
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

