Chapter 5 Problem $14{ }^{\dagger}$

Given

$m=3700 \mathrm{~kg}$
$T_{1}=T_{2}=1100 \mathrm{~N}$
$\theta_{1}=\theta_{2}=25^{\circ}$

Solution

a) Find the force of the water if the velocity is constant.

Drawing the free-body diagram, we get something similar to the diagram above. Choose the coordinate system so that the x -coordinate is to the right. Newton's $2^{\text {nd }}$ law gives the equation

$$
\begin{align*}
& \Sigma \vec{F}=m \vec{a} \\
& \vec{T}_{1}+\vec{T}_{2}+\vec{F}_{w}=m \vec{a} \tag{1}
\end{align*}
$$

Write out each of the forces in unit vector notation.

$$
T_{1} \cos \theta_{1} \hat{i}+T_{1} \sin \theta_{1} \hat{j}+T_{2} \cos \theta_{2} \hat{i}-T_{2} \sin \theta_{2} \hat{j}-F_{w} \hat{i}=0
$$

Since the angles are the same and the tensions are the same we can drop the subscripts on these values.

$$
T \cos \theta \hat{i}+T \sin \theta \hat{j}+T \cos \theta \hat{i}-T \sin \theta \hat{j}-F_{w} \hat{i}=0
$$

Notice that the acceleration term is set to zero because the barge is moving at constant velocity. The x -component equation is

$$
\begin{equation*}
T \cos \theta+T \cos \theta-F_{w}=0 \tag{2}
\end{equation*}
$$

and the y -component equation is

$$
\begin{equation*}
T \sin \theta-T \sin \theta=0 \tag{3}
\end{equation*}
$$

Use equation (2) to solve for the force of the water.

$$
\begin{aligned}
& F_{w}=T \cos \theta+T \cos \theta=2 T \cos \theta=2(1100 N) \cos \left(25^{\circ}\right) \\
& F_{w}=1990 N
\end{aligned}
$$

b) Find the force of the water if the acceleration is $0.16 \mathrm{~m} / \mathrm{s}^{2}$.

The free-body diagram still applies and all the work up to equation (1). When the forces are written out in unit vector notation, the acceleration is in the positive x -direction. This leads to the equation

$$
T_{1} \cos \theta_{1} \hat{i}+T_{1} \sin \theta_{1} \hat{j}+T_{2} \cos \theta_{2} \hat{i}-T_{2} \sin \theta_{2} \hat{j}-F_{w} \hat{i}=m a \hat{i}
$$

[^0]Since the tensions and angles are the same, we get

$$
T \cos \theta \hat{i}+T \sin \theta \hat{j}+T \cos \theta \hat{i}-T \sin \theta \hat{j}-F_{w} \hat{i}=m a \hat{i}
$$

The x-component equation is

$$
\begin{equation*}
T \cos \theta+T \cos \theta-F_{w}=m a \tag{4}
\end{equation*}
$$

and the y -component equation is

$$
\begin{equation*}
T \sin \theta-T \sin \theta=0 \tag{5}
\end{equation*}
$$

Use equation (4) to solve for the force of the water.

$$
\begin{aligned}
& F_{w}=T \cos \theta+T \cos \theta-m a=2 T \cos \theta-m a \\
& F_{w}=2(1100 \mathrm{~N}) \cos \left(25^{\circ}\right)-(3700 \mathrm{~kg})\left(0.16 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& F_{w}=1400 \mathrm{~N}
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

