

Given

$F_{s}=0.46 \mathrm{~N}$
$m_{c}=320 \mathrm{~g}=0.320 \mathrm{~kg}$
$a=0.40 \mathrm{~m} / \mathrm{s}^{2}$

Solution

Find the mass of the rat.
Since we are on the space station, there is no gravitational force. Therefore, the free-body diagram of the force on the cage and rat is illustrated above. Using Newton's 2nd law gives

$$
\Sigma F=m a
$$

The only force is that of the scale and the mass consists of both the rat and the cage. Therefore,

$$
F_{s}=\left(m_{c}+m_{r}\right) a
$$

Solving for the mass of the rat gives

$$
\begin{aligned}
& \frac{F_{s}}{a}=m_{c}+m_{r} \\
& m_{r}=\frac{F_{s}}{a}-m_{c}
\end{aligned}
$$

Substituting in the provided values gives

$$
m_{r}=\frac{0.46 \mathrm{~N}}{0.40 \mathrm{~m} / \mathrm{s}^{2}}-0.320 \mathrm{~kg}=0.830 \mathrm{~kg}
$$

Therefore, the mass of the rat is 830 g .

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

