Chapter 2 Problem 62^{\dagger}

Given

$a=-8 \mathrm{~m} / \mathrm{s}^{2}$
$v=88 \mathrm{~km} / \mathrm{h}$
Distance between cars $=85 \mathrm{~m}$

Solution

Will the cars collide. If not, how far apart will they be when they come to a stop.
First convert the velocity into m / s.

$$
v=88 \mathrm{~km} / \mathrm{h}\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=24.4 \mathrm{~m} / \mathrm{s}
$$

Next use the definition of acceleration to find the time for each car to come to a stop.

$$
\begin{aligned}
& \bar{a}=\frac{\Delta v}{\Delta t} \\
& \Delta t=\frac{\Delta v}{\bar{a}}=\frac{v_{f}-v_{i}}{\bar{a}}=\frac{0 \mathrm{~m} / \mathrm{s}-24.4 \mathrm{~m} / \mathrm{s}}{-8.0 \mathrm{~m} / \mathrm{s}^{2}}=3.05 \mathrm{~s}
\end{aligned}
$$

Assuming they don't collide, each car will travel the following distance

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}=0 m+(24.4 \mathrm{~m} / \mathrm{s})(3.05 \mathrm{~s})+\frac{1}{2}\left(-8.0 \mathrm{~m} / \mathrm{s}^{2}\right)(3.05 \mathrm{~s})^{2}=37.2 \mathrm{~m}
$$

An alternate method would be to use the kinematic equation that relates velocity to position.

$$
x-x_{0}=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{(0 \mathrm{~m} / \mathrm{s})^{2}-(24.4 \mathrm{~m} / \mathrm{s})_{0}^{2}}{2\left(-8.0 \mathrm{~m} / \mathrm{s}^{2}\right)}=37.2 \mathrm{~m}
$$

When they stop, the distance between the cars is
$85 m-2(37.2 m)=10.6 m$
Plotting the distance between the two cars as a function of time gives.

Position of Cars vs. Time

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

