Chapter 2 Problem $34{ }^{\dagger}$

Given

$v=88 \mathrm{~km} / \mathrm{h}$
$t=12 \mathrm{~s}$

Solution

a) Find the acceleration.

First convert the velocity into m / s.

$$
v=88 \mathrm{~km} / \mathrm{h}\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=24.4 \mathrm{~m} / \mathrm{s}
$$

From the definition of acceleration

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{24.4 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{12 \mathrm{~s}-0 \mathrm{~s}}=2.03 \mathrm{~m} / \mathrm{s}^{2}
$$

b) Find the distance traveled during this time.

Using the kinematic equation relating position with time gives

$$
\begin{aligned}
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& x=0 m+(0 \mathrm{~m} / \mathrm{s})(12 \mathrm{~s})+\frac{1}{2}\left(2.03 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~s})^{2}=146 \mathrm{~m}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

