Chapter 2 Problem $22{ }^{\dagger}$

Given

Figure 2.15 in the text.

Solution

a) Find the greatest velocity in the $+x$ direction.

The greatest positive velocity is where the line is increasing with the greatest slope, which is around $t=2 \mathrm{~s}$. To find this slope estimate the times when the line is at 2 m and 4 m . These times are 1.6 s and $2.3 s$ respectively. The velocity (slope) is then

$$
v=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{4 m-2 m}{2.3 s-1.6 \mathrm{~s}}=2.9 \mathrm{~m} / \mathrm{s}
$$

b) Find the greatest velocity in the $-x$ direction.

The greatest negative velocity is where the line is decreasing with the greatest slope, which is around $t=4 \mathrm{~s}$. To find this slope estimate the times when the line is at 4 m and 3 m . These times are 3.6 s and $4.25 s$ respectively. The velocity (slope) is then

$$
v=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{3 \mathrm{~m}-4 \mathrm{~m}}{4.25 \mathrm{~s}-3.6 \mathrm{~s}}=-1.5 \mathrm{~m} / \mathrm{s}
$$

c) Find the times when the object is at rest.

The object is at rest when the tangent to the curve is horizontal. This occurs around $t=3 \mathrm{~s}$ and $t=5 \mathrm{~s}$.
d) Find the average velocity over the interval shown.

The average velocity is calculated by taking the initial point $(0 m, 0 s)$ and the final point $(3 \mathrm{~m}, 6 \mathrm{~s})$.

$$
v=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{3 m-0 m}{6 s-0 s}=0.5 \mathrm{~m} / \mathrm{s}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

