Chapter 1 Problem $30{ }^{\dagger}$

Given

$5.1 \times 10^{-2} \mathrm{~cm}=5.1 \times 10^{-4} \mathrm{~m}$
$6.8 \times 10^{3} \mu \mathrm{~m}=6.8 \times 10^{-3} \mathrm{~m}=68 \times 10^{-4} \mathrm{~m}$
$1.8 \times 10^{4} N$

Solution

Add the two lengths together and multiply by the force.

$$
\left(5.1 \times 10^{-4} m+68 \times 10^{-4} m\right)\left(1.8 \times 10^{4} N\right)=1.32 \times 10^{2} N \cdot m
$$

If applying the concept of proper number of significant digits, then the result of the addition is only good to two significant digits (the 1×10^{-4} place). Also, the multiplication is only good to two significant digits. Therefore, the answer is

$$
1.3 \times 10^{2} \mathrm{~N} \cdot \mathrm{~m}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

