

Solution

Show that the angular frequency is

$$
\omega=\sqrt{\frac{k_{1}+k_{2}}{m}}
$$

From Newton's 2nd law

$$
\sum \vec{F}=m \vec{a}
$$

There are two springs attached to this block. At equilibrium spring 1 and spring 2 are exerting equal and opposite forces. If the block is displaced to the right a distance x from equilibrium, spring 1 will be stretched and will, therefore, exert an additional force of $k_{1} x$ to the left due to Hooke's law. With this same displacement spring 2 will be compressed and will exert an additional force of $k_{2} x$ to the left. Therefore, Newton's 2nd law for this example is

$$
\sum F_{x}=-k_{1} x-k_{2} x=m a
$$

Acceleration is the second derivative of position giving

$$
-\left(k_{1}+k_{2}\right) x=m \frac{d^{2} x}{d t^{2}}
$$

The rest of the development for the simple harmonic oscillator given in section 13-2 can be followed where the spring constant k is replaced with $\left(k_{1}+k_{2}\right)$. This will result in an angular frequency of

$$
\omega=\sqrt{\frac{k_{1}+k_{2}}{m}}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

