Chapter 10 Problem 33^{\dagger}

Given

$m=108 \mathrm{~g}=0.108 \mathrm{~kg}$
$D=24 \mathrm{~cm}=0.24 \mathrm{~m}$
$\Delta \theta=1 / 4$ turn $=\pi / 2 \mathrm{rad}$
$\Delta \omega=550 \mathrm{rpm}=\left(\frac{550 \mathrm{rev}}{\mathrm{min}}\right)\left(\frac{2 \pi \mathrm{rad}}{\text { rev }}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=57.6 \mathrm{rad} / \mathrm{s}$

Solution

a) Find the moment of inertia of the Frisbee.

Half of the mass is distributed as a ring with a moment of inertia of $I=M R^{2}$ and half of the mass is distributed as a disk with a moment of inertia of $I=\frac{1}{2} M R^{2}$. Therefore, $M=m / 2=0.054 \mathrm{~kg}$. Also notice that the diameter of the Frisbee is given and we need the radius. The total moment of inertia is then

$$
\begin{aligned}
& I_{t o t}=M R^{2}+\frac{1}{2} M R^{2}=\frac{3}{2} M R^{2}=\frac{3}{2}(0.054 \mathrm{~kg})(0.12 \mathrm{~m})^{2} \\
& I_{t o t}=1.17 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

b) Find the torque exerted on the Frisbee.

Torque generates an angular acceleration with a magnitude given by the formula

$$
\begin{equation*}
\tau=I \alpha \tag{1}
\end{equation*}
$$

The angular acceleration can be derived from the kinematic formula

$$
\omega_{f}^{2}-\omega_{0}^{2}=2 \alpha \Delta \theta
$$

Solving for α and substituting into equation 1 gives

$$
\begin{aligned}
& \tau=\frac{I\left(\omega_{f}^{2}-\omega_{0}^{2}\right)}{2 \Delta \theta}=\frac{\left(1.17 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left((57.6 \mathrm{rad} / \mathrm{s})^{2}-(0)^{2}\right)}{2(\pi / 2)} \\
& \tau=1.24 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

