Chapter 10 Problem $23{ }^{\dagger}$

Given

$\tau=35.0 \mathrm{~N} \cdot \mathrm{~m}$
$r=24.0 \mathrm{~cm}=0.24 \mathrm{~m}$

Solution

a) Find the force needed when applied at right angles with the wrench shaft.

From the definition of the magnitude of torque,

$$
\begin{equation*}
\tau=r F \sin \theta \tag{1}
\end{equation*}
$$

Solving for force gives

$$
F=\frac{\tau}{r \sin \theta}=\frac{(35.0 N \cdot m)}{(0.24 m) \sin \left(90^{\circ}\right)}=146 \mathrm{~N}
$$

b) Find the force needed when applied at 110° with respect to the wrench shaft.

Using the definition of torque (equation 1) and solving for force gives

$$
F=\frac{\tau}{r \sin \theta}=\frac{(35.0 N \cdot m)}{(0.24 m) \sin \left(110^{\circ}\right)}=155 \mathrm{~N}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

