Chapter 10 Problem $19{ }^{\dagger}$

Given

$\alpha=0.52 \mathrm{rad} / \mathrm{s}^{2}$

Solution

a) Find the time to reach 3600 rpm from rest.

Convert the angular velocity into $\mathrm{rad} / \mathrm{s}$.

$$
\omega=\frac{3600 \mathrm{rev}}{\min }\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}\right)=377 \mathrm{rad} / \mathrm{s}
$$

Now calculate the time for startup.

$$
\bar{\alpha}=\frac{\Delta \omega}{\Delta t}
$$

Solving for t gives

$$
\Delta t=\frac{\Delta \omega}{\alpha}=\frac{(377 \mathrm{rad} / \mathrm{s}-0)}{0.52 \mathrm{rad} / \mathrm{s}^{2}}=725 \mathrm{~s}
$$

$$
\Delta t=12.1 \mathrm{~min}
$$

b) Find the number of revolutions during startup.

Since the initial angular velocity is zero,

$$
\begin{aligned}
& \Delta \theta=\frac{1}{2} \alpha t^{2}=\frac{1}{2}\left(0.52 \mathrm{rad} / \mathrm{s}^{2}\right)(725 \mathrm{~s})^{2} \\
& \Delta \theta=1.37 \times 10^{5} \mathrm{rad}
\end{aligned}
$$

Converting to revolutions gives

$$
\Delta \theta=\left(1.37 \times 10^{5} \mathrm{rad}\right)\left(\frac{1 \mathrm{rev}}{2 \pi \mathrm{rad}}\right)=2.18 \times 10^{4} \mathrm{rev}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

