\qquad

A wheel is initially rotating at $35 \pi \mathrm{rad} / \mathrm{s}$. The wheel comes to a stop after rotating through an angle of 280π rad. The moment of inertia of the wheel is $1.25 \mathrm{~kg} \mathrm{~m}^{2}$. (10 pts)
a) What is the angular acceleration of the wheel?

The provided information is

$$
\begin{aligned}
& \omega_{0}=35 \pi \mathrm{rad} / \mathrm{s} \\
& \omega_{f}=0 \mathrm{rad} / \mathrm{s} \\
& \theta=280 \pi \mathrm{rad}
\end{aligned}
$$

Using the rotational form of the fourth kinematic equation

$$
\omega_{f}^{2}-\omega_{0}^{2}=2 \alpha \Delta \theta
$$

We solve for angular acceleration

$$
\alpha=\frac{\omega_{f}^{2}-\omega_{0}^{2}}{2 \Delta \theta}=\frac{(0 \mathrm{rad} / \mathrm{s})^{2}-(35 \pi \mathrm{rad} / \mathrm{s})^{2}}{2(280 \pi \mathrm{rad})}=6.87 \mathrm{rad} / \mathrm{s}^{2}
$$

b) What is the torque exerted on the wheel to generate this acceleration?

Torque is related to angular acceleration through the formula

$$
\tau=I \alpha
$$

Since the moment of inertia is $1.25 \mathrm{~kg} \mathrm{~m}^{2}$, the torque is

$$
\tau=\left(1.25 \mathrm{~kg} \mathrm{~m}^{2}\right)\left(6.87 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}\right)=8.59 \mathrm{~N} \cdot \mathrm{~m}
$$

