\qquad
The diagram to the right represents the fission of Uranium - 236. The fission products are Krypton - 92, Barium 141 and three neutrons. For this problem, let's just focus on the fission of $\mathrm{U}-236$ to $\mathrm{Kr}-92$ and $\mathrm{Ba}-141$. (Neglect the neutrons since they have relatively small masses.)

Before fission, the uranium with a mass of 236 is traveling downward at a speed of $2.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$. After fission, the krypton atom (mass of 92) is traveling at $2.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ with an angle of 30° to the left of the downward direction. What is the resulting velocity of the barium atom (mass of 141)? Give your answer in the form of magnitude and direction.

From the diagram the initial velocity of the uranium is

$$
\vec{v}_{U}=-2.0 \times 10^{6} \hat{\jmath} \mathrm{~m} / \mathrm{s}
$$

and the final velocity of krypton is

$$
\vec{v}_{K r}=2.5 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}(-\sin (30) \hat{\imath}-\cos (30) \hat{\jmath})=\left\{-1.25 \times 10^{6} \hat{\imath}-2.17 \times 10^{6} \hat{\jmath}\right\} \mathrm{m} / \mathrm{s}
$$

Begin with conservation of momentum

$$
\begin{gathered}
\vec{P}_{0}=\vec{P}_{f} \\
m_{U} \vec{v}_{U}=m_{K r} \vec{v}_{K r}+m_{B a} \vec{v}_{B a}
\end{gathered}
$$

Solve for the final velocity of Barium.

$$
\begin{gathered}
\vec{v}_{B a}=\frac{m_{U} \vec{v}_{U}-m_{K r} \vec{v}_{K r}}{m_{B a}} \\
\vec{v}_{B a}=\frac{236\left(-2.0 \times 10^{6} \hat{\jmath}\right)-92\left(-1.25 \times 10^{6} \hat{\imath}-2.17 \times 10^{6} \hat{\jmath}\right)}{141} \\
\vec{v}_{B a}=\frac{1.15 \times 10^{8} \hat{\imath}-2.72 \times 10^{8} \hat{\jmath}}{141}=\left\{8.16 \times 10^{5} \hat{\imath}-19.3 \times 10^{5} \hat{\jmath}\right\} \mathrm{m} / \mathrm{s}
\end{gathered}
$$

The magnitude of the velocity is

$$
v_{B a}=\sqrt{\left(8.16 \times 10^{5}\right)^{2}+\left(-19.3 \times 10^{5}\right)^{2}}=2.10 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

The angle, θ, can be calculated with the formula

$$
\begin{gathered}
\tan \theta=\frac{o p p}{a d v}=\frac{v_{x}}{v_{y}} \\
\theta=\tan ^{-1}\left(\frac{v_{x}}{v_{y}}\right)=\tan ^{-1}\left(\frac{8.16 \times 10^{5}}{19.3 \times 10^{5}}\right)=22.9^{\circ}
\end{gathered}
$$

Notice I left the negative sign off the y-component of velocity. Since I am using the diagram to determine the value of θ, I only needed to know how big the side is, not in what direction the vector was pointing. From the diagram the angle is to the right of the downward direction.

