Physics 2110-Quiz 2

Name \qquad
The position of a spaceship follows the function

$$
x=A \sin B t+C t^{3}
$$

where,

$$
\begin{aligned}
& A=3500 \mathrm{~m} / \mathrm{s}(\text { There is an error in this unit. It should be m.) } \\
& B=0.00800 \mathrm{rad} / \mathrm{s} \\
& C=0.00250 \mathrm{~m} / \mathrm{s}^{3}
\end{aligned}
$$

(Note: All numbers are good to 3 significant digits.)
a) What is the velocity function of this spaceship?

$$
\begin{aligned}
& v=\frac{d x}{d t}=\frac{d}{d t}\left(A \sin B t+C t^{3}\right)=A B \cos B t+3 C t^{2} \\
& v=(3500 \mathrm{~m})\left(0.00800 \frac{\mathrm{rad}}{\mathrm{~s}}\right) \cos \left(0.00800 \frac{\mathrm{rad}}{\mathrm{~s}} t\right)+3\left(0.00250 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}\right) t^{2} \\
& v=\left(28.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \cos \left(0.00800 \frac{\mathrm{rad}}{\mathrm{~s}} t\right)+\left(0.00750 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}\right) t^{2}
\end{aligned}
$$

b) What is the acceleration function of this spaceship?

$$
\begin{aligned}
& a=\frac{d v}{d t}=\frac{d}{d t}\left(A B \cos B t+3 C t^{2}\right)=-A B^{2} \sin B t+6 C t \\
& a=-(3500 \mathrm{~m})\left(0.00800 \frac{r a d}{s}\right)^{2} \sin \left(0.00800 \frac{r a d}{s} t\right)+6\left(0.00250 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}\right) t \\
& a=-\left(0.224 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \sin \left(0.00800 \frac{\mathrm{rad}}{\mathrm{~s}} t\right)+\left(0.0150 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}\right) t
\end{aligned}
$$

c) What is the instantaneous velocity of this spaceship at $t=90.0 \mathrm{~s}$?

$$
\begin{aligned}
& v=\left(28.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \cos \left(0.00800 \frac{\mathrm{rad}}{\mathrm{~s}}(90.0 \mathrm{~s})\right)+\left(0.00750 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}\right)(90.0 \mathrm{~s})^{2} \\
& v=\left(21.1 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+\left(60.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=81.9 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

d) What is the instantaneous acceleration of this spaceship at $t=90.0 \mathrm{~s}$?

$$
\begin{aligned}
& a=-\left(0.224 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \sin \left(0.00800 \frac{\mathrm{rad}}{\mathrm{~s}}(90.0 \mathrm{~s})\right)+\left(0.0150 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}\right)(90.0 \mathrm{~s}) \\
& a=-\left(0.148 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)+\left(1.350 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=1.20 \mathrm{~m}
\end{aligned}
$$

